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Abstract. In this paper, the contribution of hard processes described by BFKL pomeron exchange is taken
into account by calculating the first enhanced diagram. The survival probability is estimated, using the ratio
of the first enhanced diagram and the single pomeron amplitude, taking into account all essential pomeron
loop diagrams in the toy model of Mueller. The triple pomeron vertex is calculated explicitly in the momen-
tum representation. This calculation is used for estimating the survival probability, and it turns out that the
survival probability is small, at 0.4%. Hard pomeron rescattering processes contribute substantially to the
survival probability.

1 Introduction

1.1 The survival probability

The goal of this paper is to calculate the survival prob-
ability, taking into account the contribution of hard pro-
cesses described by BFKL pomeron exchange. Diffractive
Higgs production is a typical hard process, in which the
Higgs is produced from the one parton shower due to
gluon fusion. This process can be calculated in perturba-
tive QCD.
The signature of this process is the existence of so called

large rapidity gaps (LRG), in which no particles are pro-
duced [1, 2]. For the LHC energies and for diffractive Higgs
production at c.m. rapidity equal to zero, there are two
rapidity gaps. The first is between the right moving final
protons and the Higgs boson, the second is between the left
fast moving proton and the Higgs boson.
As was noticed by Bjorken [2], in hadron–hadron col-

lisions there is a considerable probability that more than
one parton shower can be produced. Therefore, one needs
to suppress such a multi-parton shower production, since
it can produce particles that fill up the rapidity gap.
This suppression can be characterized by the survival
probability [2, 3].
To illustrate what survival probability is, it is instruc-

tive to calculate it in the simple eikonal model for soft
pomerons. ‘Soft pomeron’ means that there are no pertur-
bative contributions from short distances, and only soft
non-perturbative processes contribute to the high energy
asymptotic behavior. The survival probability is defined in
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the eikonal formalism as [2, 3]

〈|S2|〉=

∫
|M(s, b)|2e−Ω(b)d2b
∫
|M(s, b)|2d2b

, (1)

whereM is the amplitude for the hard process under con-
sideration, in impact parameter space (where b is the im-
pact parameter), at the center of mass energy

√
s. In this

paper, this is the amplitude of diffractive Higgs produc-
tion from one parton shower. e−Ω(b) gives the probability
that additional inelastic scattering will not occur between
the two partons at impact parameter b. Ω(b) is called the
opacity or optical density. Therefore, the numerator is the
amplitude for the exclusive process, while the denominator
is the same process, due to the exchange of one pomeron.
The survival probability was estimated in [4], in the

eikonal approach for exclusive central diffractive produc-
tion at the LHC. The survival probability here was given
for the process illustrated in Fig. 1 in terms of the impact
parameter b. Generally, in all these models the survival
probability is given by the expression

〈|S2|〉=

∫
d2b1d

2b2
(
AH(b1)AH(b2)(1−As((b1+ b2))2)

)2
∫
d2b1d2b2(AH(b1)AH(b2))2

;

(2)

AH(b) is the hard pomeron amplitude in impact parame-
ter space b shown in Fig. 1. The amplitude AH (b) for hard
pomeron exchange can be calculated in perturbative QCD
and is responsible for the production of two gluon jets,
with BFKL ladder gluons between them (see Fig. 1). In
this model [4], the hard pomeron in Fig. 1 emits the Higgs
boson. AH(b) is given in the impact parameter b represen-
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Fig. 1. Central diffractive production in the two channel
eikonal model in proton scattering due to pomeron exchange

tation by the expression [4]

AH(b) =
1

πR2H
e
− b2

R2
H , (3)

R2H = 7.2 GeV
−2. As shown in Fig. 1, AH(b1) and AH(b2)

denote the hard pomeron amplitude above and below the
Higgs signal respectively. The contribution As, shown in
Fig. 1, denotes the soft pomeron amplitude. (1−As) in-
cludes all possible initial state interactions due to the ex-
change and interaction of soft pomerons. (1−As) also in-
cludes the possibility that the two initial nucleons in Fig. 1
do not interact at all.
The survival probability was found to be 5%–6% for

the single channel model. In the two channel model, the
survival probability here is 2.7% at the LHC energy of√
s= 14000GeV. The upper bound for the survival prob-
ability, in the constituent quark model (CQM), was found
to be 6.0%–0.1% at the LHC energy. This is almost the
same as the survival probability found in the single chan-
nel model. The two upper bounds intercept at an energy
just above the typical LHC energy. This suggests that the
upper bound for the survival probability should be 2%–3%
for measurements at the LHC.
The first attempt to estimate the contribution of hard

(semi-hard) processes to the value of the survival probabil-
ity was made by Bartels et al. in [5]. They considered the
contribution of this “fan” pomeron diagram to the value of
the survival probability, and they found that this contribu-
tion is rather large. Namely, the value ranges from 3.17%
for αs = 0.15, to 1.6% for αs = 0.25, (where αs is the QCD
coupling).
The aim of this paper, is to calculate the BFKL

pomeron (see Fig. 4) and the first enhanced diagram for
the BFKL pomeron (see Fig. 7). These calculations are in
the symmetric QCD dipole approach. Because in proton–
proton scattering, there is no reason to assume that the
mean field approximation, based on the “fan” diagram, can
work. The ratio of the two contributions of Figs. 4 and 7 are
calculated and used to estimate the value of the survival
probability.
This paper is organized in the following way. In Sect. 2,

the coupling of the BFKL pomeron to the color dipole
(Sect. 2.1) and the triple pomeron vertex (Sect. 2.2) are
calculated in the momentum representation. Using these

results, the BFKL pomeron amplitude shown in Fig. 4
is calculated (Sect. 2.3), and the first enhanced diagram
shown in Fig. 7 is calculated (Sect. 2.4).
Section 3 is devoted to the survival probability, esti-

mated in the QCD dipole approach. The ratio of the two
contributions of Figs. 4 and 7 is calculated, which is used
to estimate the value of the survival probability (Sect. 3.2).
It turns out that this ratio is not small, and this indicates
the importance of taking into account all enhanced dia-
grams. Therefore, in Sect. 3.3, all enhanced diagrams are
summed in the toy model [6]. The fact that the two dipoles
have different sizes is neglected. From the calculation of
the ratio of Figs. 4 and 7, the value of the parameter d of
this model is determined (d is the low energy amplitude for
one pomeron exchange). Using this parameter, the value
of the survival probability was estimated as the ratio of
the diffractive Higgs production in this model and Higgs
production in one parton shower (for single pomeron ex-
change). It turns out that the survival probability is rather
small.
In the conclusion, the results for the value of the sur-

vival probability are presented. A discussion is given of the
dependence of the value of the survival probability on the
choice of the intercept of the BFKL pomeron. The signifi-
cance of higher order hard rescattering contributions to the
survival probability is also discussed.

2 The conformal eigenfunctions of the vertex
operator and the triple pomeron vertex

All calculations are carried out in the momentum repre-
sentation, and the strategy and notation of [11] is closely
followed. Firstly, the pomeron coupling to the QCD color
dipole is introduced (see Fig. 2) in the momentum repre-
sentation. Secondly, an explicit expression for the triple
pomeron vertex (see Fig. 3) is derived. Using both these
formulae, the BFKL pomeron (Fig. 4) and the first en-
hanced diagram (Fig. 7) are calculated in the symmetric
QCD dipole approach.

Fig. 2. The interaction vertex of pomeron
with the dipole

Fig. 3. The triple pomeron vertex
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Fig. 4. Central diffractive production in color
dipole scattering due to single pomeron ex-
change

2.1 The BFKL pomeron vertex function

The vertex coupling the BFKL pomeron to the couple
dipole is illustrated in Fig. 2. Here, q is the momentum
transferred along the pomeron, and x12 is the transverse
size of the dipole. In the notation of [7–10], the eigenfunc-
tions for the vertex in coordinate space are defined as

En,ν(x01, x20) = (−1)
n

(
x10x20

x12

)γ (
x̄10x̄20

x̄12

)γ̄
, (4)

where xij = xi−xj and xi are the transverse coordinates.
The conformal dimensions are defined as

γ =
n+1

2
+ iν , γ̄ =−

n−1

2
+ iν , (5)

n is the conformal spin, and it is an integer. The energy lev-
els of the pomeron are the BFKL eigenvalues given by [7]

ω(n, ν) = ᾱsχ(γ) = ᾱs(2ψ(1)−ψ(γ)−ψ(1−γ)) , (6)

where in this paper the notation

ᾱs =
αsNc

π
(7)

is used, and where ψ(f) = d lnΓ (f)/df and Γ (f) is the
Euler gamma function. Since the only intercept ω(n= 0, ν)
is positive at high energies, the contribution with n �= 0 can
be neglected. Lipatov in [7] introduces the following mixed
representation of the vertex:

En,νq (x) =
2π2

bn,ν

1

|x|

∫
d2Reiq·REn,ν

(
R+
x

2
, R−

x

2

)
,

(8)

where from [7]

bn,ν =
24iνπ3

n
2 − iν

Γ
(
n
2 − iν+

1
2

)
Γ
(
n
2 + iν

)

Γ
(
n
2 + iν+

1
2

)
Γ
(
n
2 − iν

) . (9)

A more convenient expression than (8) for the vertex
was calculated in [8–10] and is given as

En,νq (x12) = (qq
∗)iν2−6iνΓ 2(1− iν) (10)

×

(

Jγ

(
q∗x12

4

)

Jγ̃

(
qx∗12
4

)

− (−1)n

×J−γ

(
q∗x12

4

)

J−γ̃

(
qx∗12
4

))

, (11)

where Jγ are the Bessel functions of the first kind. In (11), q
and q∗ are the components of the momentum q transferred
along the pomeron, in the complex representation. That
is,

|q|= qq∗ ,

q = qx+ iqy , q
∗ = qx− iqy . (12)

In order to work in the momentum representation when
calculating the single pomeron amplitude (Fig. 4), and the
first enhanced diagram (Fig. 7), it is necessary to express
the vertex function explicitly in the momentum representa-
tion. In [11] it was shown that in the momentum represen-
tation the vertex function is given by the following Fourier
transform:

E(p,q;n= 0, γ) =
bn,ν

2π2

∫
dx
√
x
exp

(

−
ip∗x

2

)

×

∫
dx∗
√
x∗
exp

(

−
ix∗p

2

)

En=0,νq (x) .

(13)

Here p denotes the momentum which is the conjugate vari-
able of the dipole size x12. The complex representation, to
express the vector p in terms of its complex components
p and p∗ (see (12)), is used in (13). In [11], this integral is
written in the following factorized form:

E(p,q;n= 0, γ) =
bn=0,ν

2π2
(q2)−iν2−6iνΓ 2(1− iν)

×
{
Ẽ(p, q;n= 0, γ̃)Ẽ(p∗, q∗;n= 0, γ)

− Ẽ(p, q;n= 0,−γ̃)Ẽ(p∗, q∗;n= 0,−γ)
}
,

(14)

where

Ẽ(p∗, q∗;n= 0, γ) =

∫
dx
√
x
Jn=0,γ̃

(
q∗x

4

)

e−
i
2 p
∗x ,

Ẽ(p, q;n= 0, γ̃) =

∫
dx∗
√
x∗
Jn=0,γ

(
qx∗

4

)

e−
i
2px

∗
.

(15)

At this point, it is assumed that n = 0, and hence
γ = γ̃ = −iν (see (5)). This is because the only inter-
cept ω(n = 0, ν) is positive at high energies (see (6)), so
the contribution n �= 0 is neglected from now on. Let
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Ẽ(p∗, q∗;n= 0, γ) and Ẽ(p, q;n = 0, γ̃) be denoted as
Ẽ(p∗, q∗; ν) and Ẽ(p, q; ν) for n= 0. After integration over
x and x∗, the expressions for Ẽ(q, p; ν) and Ẽ(q∗, p∗; ν) are
found to be [11]

Ẽ(p, q; ν) =
(q
8

)−iν
(−1)−iν iiν+

1
2 2
3
2−iνpiν−

1
2
Γ
(
1
2 − iν

)

Γ (1− iν)

× 2F1

(
1

4
−
1

2
iν,
3

4
−
1

2
iν, 1− iν,

q2

4p2

)

,

Ẽ(p∗, q∗; ν) =

(
q∗

8

)−iν
(−1)−iν iiν+

1
2 2
3
2−iν(p∗)iν−

1
2

×
Γ
(
1
2 − iν

)

Γ (1− iν)
2F1

×

(
1

4
−
1

2
iν,
3

4
−
1

2
iν, 1− iν,

(q∗)2

4(p∗)2

)

. (16)

Hence, using (16) and the expression for bn=0,ν in (9),
the RHS of (14) can be written in the explicit form of

E(p,q; ν) =−
22+2iν(p2)iν−

1
2π2

ν

Γ 2
(
1
2 − iν

)

Γ 2
(
1
2 + iν

)
Γ (iν)

Γ (−iν)

× 2F1

(
1

4
−
1

2
iν,
3

4
−
1

2
iν, 1− iν,

q2

4p2

)

2F1

×

(
1

4
−
1

2
iν,
3

4
−
1

2
iν, 1− iν,

(q∗)2

4(p∗)2

)

+
22−6iν(p2)iν−

1
2 π2

ν

(
q2

p2

)2iν

×
Γ 2(1− iν)Γ (iν)

Γ 2(1+ iν)Γ (−iν)

× 2F1

(
1

4
+
1

2
iν,
3

4
+
1

2
iν, 1+ iν,

q2

4p2

)

2F1

×

(
1

4
+
1

2
iν,
3

4
+
1

2
iν, 1+ iν,

(q∗)2

4(p∗)2

)

,

(17)

where E(p,q;n = 0, γ) is written as E(p,q; ν). For sin-
gle pomeron exchange (see Fig. 4), the conformal spin
ν has opposite signs at the two vertices at the ends of
the pomeron. In Sect. 2.3, when Fig. 4 is calculated it is
assumed that q = 0 to simplify the calculation. Hence,
from (17), the product of two vertices (for q= 0) takes the
form

E(p,q= 0; ν)E(p,q= 0;−ν) =
1

ν2
16π4

p2
. (18)

2.2 The triple pomeron vertex

In this subsection the triple pomeron vertex, illustrated in
Fig. 3 is calculated explicitly in the momentum represen-
tation. It is defined in [8–10, 12, 13] as an integral over the
center of mass position vectors (x01, x02, x03), and the con-

formal dimensions (γ, γ1, γ2) as

G3P (q,k, n= 0, γ, γ1, γ2) =G3P (q,k, ν, ν1, ν2)

=

∫
d2x10d

2x20d
2x30

x12x23x31
En,νq (x10, x20)E

n,ν1
k (x20, x30)

×En,ν2q−k (x30, x10) . (19)

To calculate the triple pomeron vertex explicitly, the
mixed representation of Lipatov in [7] is used for the ver-
tex eigenfunctions En,νq (see (8)). Note that to simplify the
calculation of the first enhanced diagram of Fig. 7, it is
assumed that q= 0 for the momentum transferred along
the pomeron, above and below the pomeron loop. Hence,
the triple pomeron vertex shown in Fig. 3 is calculated for
q= 0. In [13] this mixed representation was used in the
definition of (19) to give the expression

G3P (q= 0,k, ν, ν1, ν2) =
1

2π

∫
d2x01
x201

x−2iν−101 e
ik·x01
2

×

∫
d2x2

x201
x212x

2
02

x
2iν1+1
02 E

n,ν1
k (x02)x

2iν2+1
12 E

n,ν2
−k (x12) .

(20)

It is also assumed that |ν1|= |ν2|= 0 in evaluating the
expression of (20) for the triple pomeron vertex. A com-
plete argument for this assumption is given in Sect. A.2
of the appendix. In brief, the other obvious regions which
give a large contribution to the integrals over ν1 and ν2,
namely the regions close to ν1→±

1
2 (i= 1, 2), give a van-

ishing contribution to the first enhanced amplitude, when
it comes to integrating over the two rapidity variables Y1
and Y2 (see (39)). When evaluating the integrals over ν1
and ν2, for the expression of Fig. 7, (see (39)), one expands
the BFKL functions ω(ν1) and ω(ν2) around the saddle
point |ν1| = |ν2| = 0 (see (A.38)), which gives the largest
contribution to the integration. In the appendix, the inte-
gral of (20) is evaluated to give the triple pomeron vertex
as an explicit expression in the momentum representation
in (A.15) as

G3P (q= 0,k, ν, ν1→ 0, ν2→ 0, )

= kiν−
1
2
2−2iν

4ν1ν2π

Γ 3
(
1
2 − iν

)
Γ 2(iν)

Γ
(
1
2 + iν

) . (21)

2.3 The single pomeron amplitude

In this subsection the single pomeron amplitude with
Higgs production shown in Fig. 4 is calculated. The two
dipoles are separated by a rapidity gap Y , and they have
transverse sizes r1 = x12 and r2 = x

′
12. The momenta con-

jugate to the dipole sizes are p1 and p2, and q is the
momentum transferred along the pomeron. For simplicity
it is assumed that q= 0. The single pomeron amplitude
with Higgs production, in the QCD dipole approach is
denotedMHiggs(n= 1, Y ), where Y is the rapidity gap be-
tween the two incoming protons, and n = 1 denotes the
single pomeron exchanged between the two protons. In this
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notation, the single pomeron amplitude, with Higgs pro-
duction of Fig. 4, has the expression [7–10, 14, 15]

MHiggs(n= 1, Y ) = P
BFKL(p1,p2, Y,q= 0)AH(δYH) ,

(22)

where PBFKL(p1,p2, Y,q= 0) is the single pomeron am-
plitude given by the expression

PBFKL(p1,p2, Y,q= 0) =
α2s
4

∮

C

dγeω(γ)Y
(
γ− 12

)2

γ2(γ−1)2

×E(p1,q= 0, n= 0, γ)

×E(p2,q= 0, n= 0, γ̃) .
(23)

The contour of integration C is shown in Fig. 5, where
C encloses all singularities in the integrand of (23), and the
line which goes from −i∞ to +i∞ stands to the right of all
these singularities in the integrand of (23). It is assumed
that the integrand vanishes on the semi-circle at infinity
shown in Fig. 5, so that it is sufficient to replace

∮

C

dγ→

∫ +i∞+ε

−i∞+ε
dγ . (24)

Recall that the definition of the conformal variable γ
is γ = (n+1)/2+ iν, and for the largest contribution one
takes the n= 0 contribution only, for high energies, so that
γ = 1/2+ iν. In the variable ν, the limits of integration are
+∞− iε ≥ ν ≥−∞− iε, in the limit that ε tends to zero.
Hence, in the variable ν, the expression of (23) can be re-
cast in the following form:

PBFKL(p1,p2, Y,q= 0) =
α2s
4

∫
dν

2πi
D(ν)eω(ν)Y

×E(p1,q= 0, ν)

×E(p2,q= 0,−ν) , (25)

where ω(n = 0, ν) is the solution to the BFKL equation
defined in (6), where in the high energy limit one takes

Fig. 5. Contour enclosing singularities for in-
tegration over the conformal variable γ

n = 0. From now on the notation ω(n = 0, ν) = ω(ν) is
used. AH(δYH), which appears in (22), denotes the ampli-
tude of the subprocess which produces the Higgs boson,
such as the quark triangle subprocess of Fig. 6. The typical
rapidity window which the Higgs boson occupies is

δYH = ln

(
M2H
4m2

)

,

where m is the mass of the proton. The simplest subpro-
cess with the largest contribution for Higgs production in
the standard model is the quark triangle shown in Fig. 6.
After the subprocess amplitude of Fig. 6 is contracted with
the gluon propagators, the expression for the contribution
of the quark triangle shown in Fig. 6 is given by [16, 17]

AH(δYH) =A
(
M2H
)
(k1 ·k2) , (26)

where the factor A
(
M2H
)
has the value [18–22]

A
(
M2H
)
=
2

3

⎛

⎝−αs
(
M2H
) (√
2GF
) 1
2

π

⎞

⎠ , (27)

where GF is the Fermi coupling. D(ν), appearing in the
single pomeron amplitude of (25), is given by

D(ν) =
ν2

(
ν2+ 14

)
.2

(28)

Assuming that the conjugate momenta p1 and p2 of
the two scattering dipoles in Fig. 4 are equal in magni-
tude, (18) can be used for the product of the two pomeron
vertices. Hence, (28) can be written as

PBFKL(p1 = p2 = p, Y,q= 0)

=
4α2sπ

4

p2

∫
dν

2πi

1
(
1
4 +ν

2
)2 e

ω(ν)Y . (29)
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Fig. 6. Quark triangle subprocess for Higgs production

The integration over ν can be evaluated at the saddle
point ν = 0 of ω (ν). In this way, the RHS of (29) becomes

PBFKL(p1 = p2 = p, Y,q= 0) =

32α2sπ
3

p2

(
2π

(ω′′(ν = 0)Y )

) 1
2

eω(ν=0)Y . (30)

Hence, the final expression of (22) for the process of
Fig. 4 reads

MHiggs(n= 1, Y ) =
32α2sπ

3

p2

(
2π

(ω′′(ν = 0)Y )

) 1
2

eω(ν=0)Y

×AH(δYH) . (31)

This is the expression for the single pomeron ampli-
tude, including Higgs production, of Fig. 4. However, (31)

is written in the approximation that s= (p1+p2)
2�M2H .

Since we expect the Higgs mass to be large, we take into

Fig. 7. Central diffractive production in color
dipole scattering due to pomeron exchange
with a hard rescattering correction

account the main correction due to this mass; namely, we
make the following replacement:

eω(ν=0)Y ≡
( s
m2

)ω(ν=0)Y

−→

(
1

x1x2

)ω(ν=0)Y (
4s

M2H

)ω(ν=0)Y

≡ eω(ν=0)(Y−δYH) , (32)

where δYH = ln
(
M2H/4m

2
)
is the typical rapidity window

occupied by the Higgs boson, and where m is the mass of
proton. x1 and x2 are equal to k

2
1/s1 and k

2
2/s2 (see Fig. 4)

with s1 = (p1+ k1)
2 and s2 = (p2+ k2)

2), using the well
known kinematic relation s1s2 =M

2
Hs and since k

2
1 = k

2
2 =

M2H/2 (see [30] for example). Finally, (31) looks as follows:

MHiggs(n= 1, Y ) =
32α2sπ

3

p2

(
2π

(ω′′(ν = 0)Y )

) 1
2

× eω(ν=0)(Y−δYH)AH(δYH) . (33)

As one can see in (33) the single pomeron exchange does
not depend on the value of Higgs boson rapidity (YH) but
depends on δYH = ln(M

2
H/4m

2), which characterizes the
window in rapidity occupied by the heavy Higgs boson.

2.4 The first enhanced amplitude

In this subsection the amplitude for the first enhanced am-
plitude, with Higgs production shown in Fig. 7, is calcu-
lated. The pomeron loop is between the two rapidity values
Y1 and Y2. Hence, one needs to integrate over these two
rapidity values. There is also an integral to evaluate, over
the unknown momentum k in the pomeron loop. The en-
hanced diagram with Higgs production, in the QCD dipole
approach is denotedMHiggs(n= 2, Y ), where n= 2 denotes
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the splitting of the exchanged pomeron, into two branches
forming the loop in Fig. 7. The amplitude of Fig. 7, is the
first hard rescattering correction, to the single pomeron
amplitude of Fig. 4. In this notation, the first enhanced am-
plitude, with the Higgs production of Fig. 7, is given by

MHiggs(n= 2, Y ) = 2P
BFKL
enhanced(p1,p2, Y,q)AH(δYH) ,

(34)

where PBFKLenhanced(p1,p2, Y,q) is the BFKL pomeron am-
plitude for the first enhanced one loop diagram, which
has the expression given below in (35). The factor of 2
in (34) comes from adding the two identical contribu-
tions of Fig. 7, due to the two ways the Higgs boson is
emitted from the two branches of the pomeron loop. In
order to obtain the complete contribution of Fig. 7, both
possibilities for Higgs production from the two branches
of the loop must be considered separately and added.
PBFKLenhanced(p1,p2, Y,q) is given by the expression [8–10, 14]

PBFKLenhanced(p1,p2, Y,q) =

B

∮

C

dγ

∮

C′
dγ′
∮

C1

dγ1

∮

C2

dγ2

∫
d2k

∫ Y

YH+
1
2 δYH

dY1

×

∫ YH−12 δYH

0

dY2

×E(p1,q, n= 0, γ)

(
γ− 12

)2

γ2(1−γ)2
eω(γ)(Y−Y1)

×G3P (γ, γ1, γ2,q= 0,k)

×

(
γ1−

1
2

)2

γ21(1−γ1)
2

(
γ2−

1
2

)2

γ22(1−γ2)
2
e(ω(γ1)+ω(γ2))(Y1−Y2)−ω(γ2)δYH

×G3P (γ̃
′, γ1, γ2,q= 0,k)

×

(
γ′− 12

)2

γ′2(1−γ′)2
eω(γ

′)Y2E(p2,q, n= 0, γ̃
′) , (35)

B =−
α4sπ

4

8

(
αsNc

2π2

)2
. (36)

The contours of integrationC, C′,C1 andC2 are shown
in Fig. 5, whereC, C′,C1 andC2 enclose all singularities in
the integrand of (35), and the line which goes from−i∞ to
+i∞ stands to the right of all these singularities in (35). It
is assumed that the integrand vanishes on the semi-circle at
infinity shown in Fig. 5, so that it is sufficient to replace

∮

C′
dγ→

∫ +i∞+ε

−i∞+ε
dγ′ ,

∮

C

dγ→

∫ +i∞+ε

−i∞+ε
dγ ,

∮

C1

dγ1→

∫ +i∞+ε

−i∞+ε
dγ1 ,

∮

C2

dγ2→

∫ +i∞+ε

−i∞+ε
dγ2 ;

(37)

using the replacements of (37), one can rewrite (35) as

PBFKLenhanced(p1,p2, Y,q) =B

∫ +i∞+ε

−i∞+ε
dγ

∫ +i∞+ε

−i∞+ε
dγ′

×

∫ +i∞+ε

−i∞+ε
dγ1

∫ +i∞+ε

−i∞+ε
dγ2

∫
d2k

∫ Y

YH+
1
2 δYH

dY1

×

∫ YH− 12 δYH

0

dY2E(p1,q, n= 0, γ)

(
γ− 12

)2

γ2(1−γ)2

× eω(γ)(Y−Y1)G3P (γ, γ1, γ2,q= 0,k)

×

(
γ1−

1
2

)2

γ21(1−γ1)
2

(
γ2−

1
2

)2

γ22(1−γ2)
2
e(ω(γ1)+ω(γ2))(Y1−Y2)−ω(γ2)δYH

×G3P (γ̃
′, γ1, γ2,q= 0,k)

×

(
γ′− 12

)2

γ′2(1−γ′)2
eω(γ

′)Y2E(p2,q, n= 0, γ̃
′) . (38)

Recall that the definition of the conformal variable γ
is γ = (n+1)/2+ iν, and for the largest contribution one
takes the n = 0 contribution only, for high energies, such
that γ = 1/2+ iν. Hence, in terms of the variables ν, ν′, ν1
and ν2, the limits of integration are +∞− iε≥ ν ≥−∞−
iε, and similarly one has the same integration limits for the
integrals over ν′, ν1 and ν2. In each case one takes the limit
that ε tends to zero. Hence, in terms of these variables, the
expression of (38) can be recast in the following form:

PBFKLenhanced(p1,p2, Y,q) =B

∫ ∞

−∞
dν

∫ ∞

−∞
dν′
∫ ∞

−∞
dν1

×

∫ ∞

−∞
dν2

∫
d2k

∫ Y

YH+
1
2 δYH

dY1

∫ YH− 12 δYH

0

dY2

×E(p1,q, ν)D(ν)e
ω(ν)(Y−Y1)G3P (ν, ν1, ν2,q= 0,k)

×D(ν1)D(ν2)e
(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYH

×G3P (−ν
′, ν1, ν2,q= 0,k)e

ω(ν′)Y2E(p2,q,−ν
′) ,
(39)

where YH is the rapidity of the Higgs boson. YH here is con-
sidered to be equal to zero in the c.m. frame, restricting
ourselves to the production of the Higgs boson at rest in the
center of mass frame since it is the most likely experimen-
tal kinematics, and δYH = ln

(
M2H/4m

2
)
characterizes the

rapidity window occupied by the Higgs boson. Using the
same assumptions as Sect. 2.2, the integral over k in (39) is
evaluated in the appendix with the result given in (A.18) as

∫
d2kG3P (ν, ν1→ 0, ν2→ 0,q= 0,k)

×G3P (−ν
′, ν1→ 0, ν2→ 0,q= 0,k)

ν1,ν2→0
−−−−→

22(iν
′−iν)

8

δ(ν−ν′)

4ν214ν
2
2

×
Γ 3
(
1
2 + iν

′
)
Γ 3
(
1
2 − iν

)
Γ 2(−iν′)Γ 2(iν)

Γ
(
1
2 − iν

′
)
Γ
(
1
2 + iν

) . (40)

Note that ν21 and ν
2
2 in the denominator of (40) can-

cel with D(ν1) and D(ν2) in (39) (see (28)). When insert-
ing (40) into the right hand side of (39), the delta function
is absorbed in the integration over ν′, to give the result

PBFKLenhanced(p1,p2, Y,q= 0) =
Bπ2

8

∫ ∞

−∞
dν

∫ ∞

−∞
dν1

∫ ∞

−∞
dν2

∫ Y

YH+
1
2 δYH

dY1

∫ YH− 12 δYH

0

dY2
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×E(p1,q, ν)D
2(ν)eω(ν)(Y−Y1+Y2)

Γ 2
(
1
2 − iν

)
Γ 2
(
1
2 + iν

)

4ν214ν
2
2ν
2 sin2(iνπ)

×D(ν1)D(ν2)e
(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYHE(p2,q,−ν) .

(41)

Now the integrals over ν, ν1, ν2 and the two rapidity
values Y1 and Y2 need to be evaluated. Y1 and Y2 are the
upper and lower rapidity values for the pomeron loop in
Fig. 7. The details of the integrations are given in Sect. A.2
of the appendix, and the final expression is given in (A.51)
as

PBFKLenhanced(p1,p2, Y,q= 0) =
32Bπ8

(2ᾱs)5p2

×
δYH

ω′′(ν = 0)Y 1/2(Y − δYH)1/2

×

(

(2ω(ν = 0))4−2
(2ω′′(ν = 0))3

Y
−2
(2ω′′(ν = 0))3

Y − δYH

)

× e2ω(ν=0)(Y−
1
2 δYH) , (42)

where the constant B is given in (36). Therefore, the full
expression for the diagram of Fig. 7 given by (34) takes the
form

MHiggs(n= 2, Y ) =
64Bπ8

(2ᾱs)5p2

×
δYH

ω′′(ν = 0)Y 1/2(Y − δYH)1/2

×

(

(2ω(ν = 0))4−2
(2ω′′(ν = 0))3

Y
−2
(2ω′′(ν = 0))3

Y − δYH

)

× e2ω(ν=0)(Y−
1
2 δYH)AH(δYH) . (43)

3 The survival probability in diffractive Higgs
production in color dipole scattering due to
pomeron exchange

3.1 The definition of survival probability

In this section the survival probability of large rapidity
gaps, in diffractive Higgs production, is calculated, using
the ratio of Figs. 4 and 7 (see (31) and (43)). To guar-
antee that there will still be a large rapidity gap (LRG)
between the protons after scattering, all hard rescatter-
ing corrections that could give terms filling up the LRG
must be taken into account. The survival probability is
the probability to just have exclusive Higgs production
shown in Fig. 4, and not any higher order hard rescat-
tering corrections, such as the first enhanced diagram of
Fig. 7. In other words, the survival probability of the LRG
is calculated by subtracting the sum over all hard rescat-
tering amplitudes from the single pomeron amplitude of
Fig. 4, dividing the result by the single pomeron ampli-
tude of Fig. 4 itself, to obtain the correctly normalized

survival probability. Therefore, the survival probability is
defined by

〈|S2|〉=
MHiggs(n= 1, Y )−

∑∞
n=2(−1)

nMHiggs(n, Y )

MHiggs(n= 1, Y )
,

(44)

whereMHiggs(n, Y ) is the nth order hard rescattering cor-
rection. For example, in the case of n = 2, the first hard
rescattering correction MHiggs(n = 2, Y ) is the contribu-
tion of the first enhanced diagram of Fig. 7, which has
two pomeron branches, forming the pomeron loop. In gen-
eral,MHiggs(n, Y ) is the contribution given by the diagram
which has n pomeron branches. In calculating the survival
probability, if only the first enhanced diagram is taken into
account, and corrections of the order n= 3 and higher are
ignored, then (44) reduces to

〈|S2|〉=
MHiggs(n= 1, Y )−MHiggs(n= 2, Y )

MHiggs(n= 1, Y )

= 1−
MHiggs(n= 2, Y )

MHiggs(n= 1, Y )
. (45)

The ratio
MHiggs(n=2,Y )

MHiggs(n=1,Y )
is calculated in the next sub-

section, in the symmetric QCD dipole approach (see (49)
in Sect. 3.2). It turns out that this ratio is not small and,
therefore, all enhanced diagrams need to be taken into ac-
count. Using the toy model suggested by Mueller in [6], all
enhanced diagrams are taken into account in the Mueller–
Patel–Salam–Iancu (MPSI) approach [23–25]. The for-
mula for the scattering amplitude in this model was sug-
gested by Kovchegov in [26].

3.2 The QCD dipole approach

The survival probability of large rapidity gaps, in diffrac-
tive Higgs production in the QCD dipole approach, is the
probability for the exclusive Higgs production of Fig. 4,
with a large rapidity gap between the Higgs signal and
the two emerging dipoles. To calculate the survival proba-
bility, all hard rescattering corrections which could fill up
the large rapidity gaps must be subtracted from the single
BFKL Higgs amplitude MHiggs(n = 1, Y ), and the result
must be divided by MHiggs(n= 1, Y ). If only the first en-
hanced rescattering correction MHiggs(n = 2, Y ) is taken
into account, then the survival probability in the symmet-
ric QCD dipole approach is estimated to be

〈|S2|〉=
MHiggs(n= 1, Y )−MHiggs(n= 2, Y )

MHiggs(n= 1, Y )

= 1−
MHiggs(n= 2, Y )

MHiggs(n= 1, Y )
, (46)

where the amplitudes M(n= 1, Y ) and M(n= 2, Y ) have
been calculated in (31) and (43), respectively. Using the

results of (31) and (43), the ration M(n=2,Y )M(n=1,Y ) appearing
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in (46) is found to obey the expression

MHiggs(n= 2, Y )

MHiggs(n= 1, Y )
=
2Bπ5

α2s (2ᾱs)
5

δYH

ω′′(ν = 0)

×

(
(2ω(ν = 0))4

Y
−4
(2ω(ν = 0))3

Y 2

)(
ω′′(ν = 0)Y

2π

) 1
2

× eω(ν=0)Y , (47)

where the constant B is given in (36). Here a typical value
for αs, at the scale of MZ , the mass of the Z boson, is
used. It is expected that the Higgs boson will be produced
with a mass of approximately 100GeV, which would give
a value for the strong coupling constant αs ∼ 0.12. This
corresponds to a Z particle mass [27]MZ = 90.8±0.6GeV.
The following values are to be found in [27, 28] for the

strong coupling and the BFKL function:

αs = 0.12 , ω(ν = 0) = ᾱs4 ln 2 ,

1

2
ω′′(ν = 0) = 14ᾱs , ζ(3)ζ(3)∼= 1.202 . (48)

Assuming that the rapidity gap Y at the LHC is 19,
and using the numerical values given in (48), the right hand
side of (47) yields following:

M(n= 2, Y )

M(n= 1, Y )
= 2.8eω(ν=0)Y . (49)

This value is not small and increases with energy.
Therefore, it shows that all enhanced diagrams have to be
taken into account. In the next section all enhanced dia-
grams are summed in the toy model.

3.3 The toy model approach

In this subsection, the survival probability is calculated
taking into account all enhanced diagrams. The toy model
proposed by Mueller in [6], is a model for describing
pomeron exchange in onium–onium scattering. In the toy
model, the dipole wave function of an onium is described
by the generating functional for dipoles [6] Z(Y, [u]):

Z(Y −Y0; [u])

≡
∑

n=1

∫
Pn(Y ; r1, b1, r2, b2, . . . , ri, bi, . . . , rn, bn)

×
n∏

i=1

u(ri, bi)d
2rid

2bi . (50)

Here, Pn are the probabilities to find dipoles with sizes ri
and impact parameters bi at rapidity Y , and u(x01, b) is an
arbitrary function of the dipole of transverse size x01 at im-
pact parameter b. In the toy model which we are going to
consider here we neglect the dependence of u on the size
of dipoles and their impact parameters [6]. In this model
Z(x01, b, Y, u) degenerates to the generating function and
obeys the following evolution equation [6]:

dZ(Y, u)

dY
=∆Z2(Y, u)−∆Z(Y, u) , (51)

where ∆ is the pomeron intercept. In Sects. 2.3 and 2.4,
the pomeron intercept can be taken to be the BFKL inter-
cept ∆ = ω(ν = 0) to provide a matching with the BFKL
pomeron calculus. The initial condition for (51) is given by

Z(Y = 0, u) = u . (52)

The solution of the toymodel (51) which satisfies the initial
condition of (52) is [6, 26]

Z(Y, u) =
u

u+(1−u)e∆Y
. (53)

Equation (53) gives the sum over all “fan” diagrams. To
generalize this result to the sum over all essential enhanced
diagrams, the MPSI approximation is used to sum over all
diagrams, with pomeron loops larger than Y2 . In [26], the
forward scattering amplitude in the MPSI approximation
was written, and it has the form

D(Y, d) = 1− exp

(

−d
d2

dudv

)

Z

(
Y

2
, u

)

×Z

(
Y

2
, v

)

|u=1,v=1 , (54)

where d is the dipole amplitude (0< d < 1) at low energy.
Substituting for Z(Y, u), the right hand side of (53) in (54)
yields the following expression forD(Y, d) [26]:

D(Y, d) =−
∞∑

n=1

(−1)nD(n, Y, d)

=−
∞∑

n=1

n!(−1)ndnen∆Y
(
1− e∆

Y
2

)2n−2
.

(55)

At large rapidity values, one can make the approxima-
tion 1− e∆

Y
2 ≈−e∆

Y
2 , so that (55) can be rewritten as

D(Y, d) =−
∞∑

n=1

(−1)nD(n, Y, d) =−
∞∑

n=1

n!(−1)ndnen∆Y .

(56)

In (56), the nth term is the amplitude for n pomeron
exchange. Hence, (56) is the sum over all hard rescatter-
ing correction amplitudes for pomeron exchange in onium–
onium scattering. This approach is used in [23–25]. To
include Higgs production in the toy model, one has to re-
place one of the n dipole amplitudes by the contribution
AH(δYH) from the subprocess for Higgs production. The
leading subprocess is the quark triangle shown in Fig. 6.
Hence, for each of the terms, a factor of n is included to
account for the possibility that the Higgs boson can be pro-
duced from any of the n pomerons. After Higgs production
is included in the toymodel of (56), the resulting amplitude
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takes the form

DHiggs(Y, d) =−
∞∑

n=1

(−1)nDHiggs(n, Y, d)

=−
∞∑

n=1

(−1)ndn−1n!nen∆Y AH(δYH)

=
∂

∂d
D(Y, d)AH(δYH) , (57)

where

DHiggs(n, Y, d) = d
n−1n!nen∆Y AH(δYH)

=
∂

∂d
D(n, Y, d)AH(δYH) . (58)

The notation DHiggs(n, Y, d) refers to the toy model
BFKL pomeron amplitude, including Higgs production,
with n pomeron branches. This should not be confused
with the notationMHiggs(n, Y ), which refers to the equiva-
lent nth order term in the symmetric QCD dipole ap-
proach. The n= 1 term in (57), corresponds to the single
pomeron amplitude of Fig. 4. The n = 2 term in (57) cor-
responds to the first enhanced amplitude of Fig. 7, with
the hard rescattering correction of the pomeron loop.
In Sect. 3.1, the survival probability was defined by the ex-
pression given in (44). Hence, in the toy model approach,
the survival probability takes the form

DHiggs(n= 1, Y, d)−
∑∞
n=2(−1)

nDHiggs(n, Y, d)

DHiggs(n= 1, Y, d)
.

(59)

Inspection of (57) shows that the numerator on the
RHS of (59) can be rewritten as

DHiggs(Y, d) =

DHiggs(n= 1, Y, d)−
∞∑

n=2

(−1)nDHiggs(n, Y, d) . (60)

Hence, the toy model formula for the survival probabil-
ity of (59) becomes

DHiggs(Y, d)

DHiggs(n= 1, Y, d)
=

∂
∂d
D(Y, d)

∂
∂d
D(n= 1, Y, d)

. (61)

Typically, the Higgs signal will occupy a rapidity win-

dow δYH = ln
M2H
4m2
. Therefore, in the toy model, pomeron

exchange between scattering dipoles separatedby a rapidity
gap of less than δYH should be excluded for Higgs produc-
tion. Therefore, the toy model amplitude MHiggs(n, Y, d)
should be divided by the scattering amplitude MHiggs(n,
δYH, d), which gives the scattering amplitude for dipoles
separated by a rapidity gap less than δYH. Taking this into
account, (61) is modified to give the survival probability
for diffractive Higgs production within the rapidity window
δYH:

〈|S2|〉=

(
∂
∂dD(Y, d)

)
/
(
∂
∂dD(δYH, d)

)

(
∂
∂d
D(n= 1, Y, d)

)
/
(
∂
∂d
D(n= 1, δYH, d)

) .

(62)

In order to calculate the survival probability using the
expression of (59), the value of the parameter d, appearing
in the expression for D(Y, d), must be determined. To do
so, it is useful to refer back to the calculation of Sect. 3.2,

where the ratio
MHiggs(n=2,Y )

MHiggs(n=1,Y )
was calculated, in the sym-

metric QCD dipole approach (see (49)). In order for the
toy model to be consistent with the QCD dipole approach,
the ratio calculated in (49) should be the same in the toy
model. Setting n= 1, (58) gives for single pomeron ampli-
tude in the toy model

DHiggs(n= 1, Y, d) = e
∆Y AH(δYH) . (63)

Setting n= 2 in (58), the first enhanced amplitude in
the toy model is given by

DHiggs(n= 2, Y, d) =−4de
2∆Y AH(δYH) . (64)

Therefore, using (63) and (64), the following condition
is imposed:

MHiggs(n= 2, Y )

MHiggs(n= 1, Y )
=
DHiggs(n= 2, Y, d)

DHiggs(n= 1, Y, d)

=
−4d2e2∆Y AH(δYH)

de∆Y AH(δYH)
=−4de∆Y .

(65)

Substituting for
MHiggs(n=2,Y )

MHiggs(n=1,Y )
the result of (49) on the

LHS of (65), and setting the pomeron intercept equal to the
BFKL intercept ∆ = ω(ν = 0), to be consistent with the
QCD dipole approach, enables one to calculate a value for
d in the toy model. One finds

d= 0.7 . (66)

One can now proceed to calculate the survival prob-
ability, by taking into account all higher additional hard
rescattering corrections, using the formula of (61). From
(56), the expression forD(Y, d) can be written as

D(Y, d) =−
∞∑

n=1

n!(−de∆Y )n

=−
∞∑

n=1

∫ ∞

0

dte−t(−dte∆Y )n

= 1−

∫ ∞

0

dt
e−t

1+ dte∆Y
. (67)

After changing variables to u= 1
de∆Y

+ t, the RHS reduces
to

D(Y, d) = 1−
exp
(

1
de∆Y

)

de∆Y

∫ ∞

1
de∆Y

due−u

u

= 1−
exp
(

1
de∆Y

)

de∆Y
Γ

(

0,
1

de∆Y

)

. (68)
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If one notes that in general d
dxΓ (0, x) = −

e−x

x
, then

substituting for D(Y, d) the RHS of (68) in (62) gives the
following expression for the survival probability:

〈|S2|〉=

(
e2∆δYH

e2∆Y

)

×

⎛

⎝
exp
(

1
de∆Y

)
Γ
(
0, 1
de∆Y

)(
1+de∆Y

de∆Y

)
−d

exp
(

1

de∆δYH

)
Γ
(
0, 1

de∆δYH

)(
1+de∆δYH

de∆δYH

)
−d

⎞

⎠ .

(69)

The typical rapidity window δYH, which the Higgs sig-

nal is expected to occupy, is δYH = ln

(
M2H
4m2

)

, whereM2H ∼

100GeV. The typical rapidity gap is expected to be Y = 19
for the LHC energy of

√
s= 14 TeV. Setting the pomeron

intercept equal to the BFKL intercept, ∆BFKL = ω(ν =
0) = ᾱs4 ln 2≈ 0.34 [28], the value for the survival probabil-
ity from (69) is found to be

〈|S2(∆BFKL)|〉= 0.004 . (70)

This gives the survival probability as 0.4%. However,
the larger survival probability is obtained by abandoning
the BFKL intercept ω(ν = 0)≈ 0.34 and replacing the in-
tercept with that of the intercept of the soft pomeron.
The intercept of the soft pomeron is intended to mean
the phenomenological intercept of the Landshoff–Donachie
pomeron. This intercept (denoted here as ∆soft) is propor-
tional to the strong coupling αs by the relation ∆soft =
cαs = 0.08. Hence, if one takes the strong coupling to be
αs = 0.12 for example, then the constant of proportionality
c = 0.067. In this case, using ∆soft as the pomeron inter-
cept in (69), one obtains the following value for the survival
probability:

〈|S2(∆soft)|〉= 0.3 . (71)

More recently the Durham group found [31] the value
for the soft pomeron intercept to be ∆Durham group = 0.6,
which gives for the survival probability

〈|S2(∆Durham group)|〉= 5×10
−6 . (72)

The values found for the survival probability, which
depends on the choice of intercept, are summarized in
Table 1.
Therefore, from these results it is clear that the sur-

vival probability depends critically on the intercept chosen.
More specifically, the survival probability, as a function of
the intercept ∆ is not monotonic. The survival probability
increases, as the intercept ∆ decreases in value. For large
rapidity gaps Y , from (69), the survival probability is ap-
proximately proportional to

〈|S2(∆)|〉 ∝
1

exp(2∆(Y − δYH))
. (73)

The typical LHC value for the rapidity gap Y between the
scattering dipoles is Y = 19, and for the predicted Higgs

pomeron intercept survival probability

∆Durham group 5×10−6

∆BFKL 0.004
∆soft 0.3

Table 1. Results for the survival probability for different
Pomeron intercepts

mass of M2H , the rapidity window occupied by the Higgs

boson, is expected to be δYH = ln

(
M2H
4m2

)

. Hence, provided

that Y − δYH > 0, (73) explains why the survival probabil-
ity increases as the intercept∆ decreases.
Based on these results, in the toy model, the hard

rescattering contributions from higher n corrections range
from 0.4% up to around 10%. Hence, the corrections are
substantial and need to be taken into account when calcu-
lating the survival probability. d in the toy model takes the
value found in (66) to be d = 0.7. This is less than unity.
By inspection of the summation in (57), one can see that
d is large enough, so that the terms n = 3 and higher will
give significant corrections to the survival probability cal-
culated in this paper.
To summarize, it is found, firstly, that d is large, giv-

ing significant higher contributions. Secondly, these higher
contributions need to be taken into account, when calculat-
ing the survival probability.

4 Conclusion

The main results of this paper are the following.

1. The first calculation of the enhanced BFKL diagram for
diffractive Higgs production.

2. Estimates for the survival probability for the full set of
enhanced diagrams using the simplified toy model.

3. The results of this estimate for the survival proba-
bility, show that the value depends crucially on the
coupling constant of QCD, and that multi-pomeron ex-
change gives a substantial contribution to the survival
probability.

It was found that in the most consistent result for
the survival probability, the value is rather small, namely
0.4%. In conclusion, this paper shows that hard processes
give a substantial contribution in the calculation of the
survival probability. This paper is the first step forward to-
wards obtaining reliable estimates of the influences of hard
processes at high energy.
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Appendix

A.1 Calculation of the triple pomeron vertex

In this section the triple pomeron vertex is calculated to
give an explicit expression in the momentum representa-
tion. This will be useful for calculating the first enhanced
diagram of Fig. 7 in Sect. 2.4. In the expression for Fig. 7,
(see (39)), the BFKL functions ω(ν1) and ω(ν2) are ex-
panded around the saddle points ν1 = ν2 = 0. This gives
the largest contribution to the integration. Hence, in this
subsection the triple pomeron vertex is calculated in the
limiting case when ν1 = ν2 = 0. It is assumed at the start of
the calculation that ν1 and ν2 are small and finite; however,
at the end of the calculation ν1 and ν2 are put equal to zero.
The triple pomeron vertex shown in Fig. 3 was defined in
Sect. 2.2 (see (19)). We have

G3P (q,k, n= 0, γ, γ1, γ2) =G3P (q,k, ν, ν1, ν2) =
∫
d2x10d

2x20d
2x30

x12x23x31
En,νq (x10, x20)E

n,ν1
k (x20, x30)

×En,ν2q−k (x30, x10) . (A.1)

A useful expression, to be found in [13], was given
in (20) in terms of the mixed representation of the vertex
function En,νk (x) (see (8)) as

G3P (q= 0,k, ν, ν1, ν2) =
1

2π

∫
d2x01
x201

x−2iν−101 e
ik·x01
2

×

∫
d2x2

x201
x212x

2
02

x
2iν1+1
02 E

n,ν1
k (x02)x

2iν2+1
12 E

n,ν2
−k (x12) .

(A.2)

In (A.2), it is assumed that q in Fig. 3 is zero. This is
because for the calculation of the first enhanced diagram
in Sect. 2.4 (see Fig. 7), the momentum q transferred along
the pomeron above and below the loop is set to zero to
make the calculation simpler. In Fig. 7, there are two triple
pomeron vertices, at opposite ends of the pomeron loop.
Here, the momentum k is the unknown momentum in the
pomeron loop. Evaluating the integral over x01 in (A.2)
gives an expression in which the dependence on the mo-
mentum k is explicit, namely [13]

G3P (q= 0,k, ν, ν1, ν2) = 2
3−2γ−2γ1−2γ2(k2)iν+iν1+iν2−

1
2

×
Γ
(
1
2 − iν− iν1− iν2

)

Γ
(
1
2 + iν+ iν1+ iν2

)g3P (γ, γ1, γ2) , (A.3)

where g3P (γ, γ1, γ2) is the multidimensional integral re-
lated to the triple BFKL pomeron interaction, given by [13]

g3P (γ, γ1, γ2) =

∫
d2x

|x+|2−2γ1 |x−|2−2γ2

∫
d2R

|R+|2γ1 |R−|2γ1

×

∫
d2R′

|R′+|
2γ2 |R′−|

2γ2
|R−−R

′
−|
2γ+2γ1+2γ2−4,

(A.4)

where in the notation of [13],

γ =
1

2
+ iν , γ1 =

1

2
+ iν1 , γ2 =

1

2
+ iν2 ,

x+ = x+
n

2
, x− = x−

n

2
, R+ =R+

x+

2
,

R− =R−
x+

2
, R′+ =R

′+
x−

2
, R′− =R

′−
x−

2
.

(A.5)

The region of integration in (41) that turns out to give
the largest contribution is the region close to iν→ 1

2 , and
the region close to |ν1| → 0 and |ν2| → 0. A complete argu-
ment for this claim is given in Sect. A.2 of the appendix, for
the reason that this region gives a vanishing contribution
to the first enhanced amplitude, when it comes to integrat-
ing over the two rapidity variables Y1 and Y2 (see (39)). For
now it will be assumed in the derivation of the relevant ex-
pression of the triple pomeron vertex that the region close
to |ν1| → 0 and |ν2| → 0 is the only relevant region neces-
sary to consider. With this in mind, with the definition
in (A.5), the relevant region of integration is close to the
points where

γ→ 1γ1→
1

2
γ2→

1

2
⇒ γ+γ1+γ2→ 2 . (A.6)

Consider the part of the integration over R′ in (A.4),
which takes the form

∫
d2R′

(R′+)
2γ2
(
R′−
)2γ2

(
R−−R

′
−

)2γ+2γ1+2γ2−4 =

∫
dR′

(
R′+
)γ2 (R′−

)γ2
(
R−−R

′
−

)γ+γ1+γ2−2

×

∫
dR′∗

(
R′∗+
)γ2 (R′∗−

)γ2
(
R∗−−R

′∗
−

)γ+γ1+γ2−2 .

(A.7)

In (A.7) the complex notation d2R′ = dR′dR′
∗
has

been used. Evaluating the integrations over R′ and R′
∗

gives

∫
dR′

(
R′+
)γ2 (R′−

)γ2
(
R−−R

′
−

)γ+γ1+γ2−2 =

π
1
2
Γ
(
3
2 −γ1−γ2−γ

)

Γ (2−γ−γ1−γ2)

(R+− (x+−x))γ1+γ2+γ−
3
2

x
1
2
−

2F1

×

(
1

2
,
1

2
, γ1+γ2+γ−

1

2
,
R+− (x+−x)

x−

)

+π−
1
2Γ (2−γ−γ1−γ2)Γ

(

γ+γ1+γ2−
3

2

)

×x(γ+γ1+γ2)−2− . (A.8)

Inspection of the right hand side of (A.8) shows that one
has a singularity at γ+γ1+γ2→ 2, which is the point de-
fined in (A.6), namely focussing on the case when iν→ 1

2
and |ν1|= |ν2|= 0 (see (A.5)). In this case, Γ (2−γ−γ1−
γ2) tends to infinity, which means that the first term on
the RHS of (A.8) vanishes and the second term gives the
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largest contribution. There is one more singularity present
in (A.8), which comes from the Γ

(
γ+γ1+γ2−

3
2

)
term

in the second term on the RHS, in the case where γ+
γ1+γ2→

3
2 . This corresponds to the region where |ν|= 0,

|ν1| = 0 and |ν2| = 0, or when γ+γ1+γ2 = −n, where n
is any real positive integer. However, as was mentioned
above, it will be shown in Sect. A.2 that this region gives
a vanishing contribution to the first enhanced amplitude,
when it comes to integrating over the two rapidity vari-
ables Y1 and Y2 (see (39)) for the region close to the points
|ν1| → 0 and |ν2| → 0. Therefore, this singularity never be-
comes manifest in the calculation, and hence in the only
relevant case when iν→ 1

2 and |ν1|, |ν2| → 0. Even though
the first term on the RHS of (A.8) is thrown away, this
singularity, namely when γ+ γ1+ γ2 → 3/2, is not lost.
Hence, (A.8) reduces to
∫

dR′
(
R′+
)γ2 (R′−

)γ2
(
R−−R

′
−

)γ+γ1+γ2−2 =

π−
1
2Γ (2−γ−γ1−γ2)Γ

(

γ+γ1+γ2−
3

2

)

x
(γ+γ1+γ2)−2
− .

(A.9)

Inserting the result of (A.9) back into the result of (A.4)
gives

g3P (γ, γ1, γ2)

=

∫
dR+
R
γ2
+

∫
dx+

(x+−n)γ+γ1+γ2−2

x
γ1
+ (x+−n)

γ2(R+−x+)γ2

×

∫
d
(
R∗+
)

(
R∗+
)γ2

∫
d
(
x∗+
)

×

((
x∗+
)
−n
)γ+γ1+γ2−2

(
x∗+
)γ1 ((x∗+

)
−n
)γ2 ((R∗+

)
−
(
x∗+
))γ2

×
1

π
Γ 2(2−γ−γ1−γ2)Γ

2

(

γ+γ1+γ2−
3

2

)

.

(A.10)

Now, using the notation for γ, γ1 and γ2 defined
in (A.5), g3P (γ, γ1, γ2) becomes, in the limit that |ν1| =
|ν2|= 0,

g3P (γ, γ1, γ2) = lim
iν1→0

∫
dR+

R
1
2+iν1
+

×

∫
dx+

1

x
1
2+iν1
+ (x+−n)

1
2−3iν1(R+−x+)

1
2+iν1

× lim
iν2→0

∫
dR∗+

(
R∗+
) 1
2+iν2

∫
dx∗+

×
1

(
x∗+
) 1
2+iν2

(
x∗+−n

)1
2−3iν2

(
R∗+−x

∗
+

) 1
2+iν2

×
1

π
Γ 2
(
1

2
− iν

)

Γ 2 (iν) . (A.11)

It is instructive to leave ν1 and ν2 small but finite in the
indices, and let them be driven to zero at the end of the cal-
culation, to avoid divergent integrals. Now integrating over

x+ and x
∗
+ gives the following result:

g3P (γ, γ1, γ2) =
1

π
Γ 2
(
1

2
− iν

)

Γ 2(iν) lim
iν1→0

∫
dR+

R
1+2iν1
+

×
Γ
(
1
2 + iν1

)
Γ
(
1
2 +3iν1

)

Γ (1+4iν1)
2F1

×

(
1

2
+ iν1,

1

2
+ iν1, 1+4iν1,

1

R+

)

+R1+2iν1+ π2F1

×

(
1

2
−3iν1,

1

2
+ iν1, 1, R+

)

lim
iν2→0

∫
dR∗+

(
R∗+
)1+2iν2

×
Γ
(
1
2 + iν2

)
Γ
(
1
2 +3iν2

)

Γ (1+4iν2)
2F1

×

(
1

2
+ iν2,

1

2
+ iν2, 1+4iν2,

1

R∗+

)

+
(
R∗+
)1+2iν2 π2F1

×

(
1

2
−3iν2,

1

2
+ iν2, 1, R

∗
+

)

. (A.12)

In the limit that |ν1|, |ν2| → 0 the factor

Γ
(
1
2 + iν1

)
Γ
(
1
2 +3iν1

)

Γ (1+4iν1)
→ π ,

and (A.12) reduces to

g3P (γ, γ1, γ2) = lim
iν1→0

∫
dR+

R
1+2iν1
+

(

2F1

(
1

2
,
1

2
, 1,
1

R+

)

+R1+2iν1+ 2F1

(
1

2
,
1

2
, 1, R+

))

× lim
iν2→0

∫
dR∗+

(
R∗+
)1+2iν2

(

2F1

(
1

2
,
1

2
, 1,
1

R∗+

)

+
(
R∗+
)1+2iν2

2F1

(
1

2
,
1

2
, 1, R∗+

))

×πΓ 2
(
1

2
− iν

)

Γ 2 (iν) . (A.13)

Finally, evaluating the integral over R+ in (A.13) gives
the result for g3P (γ, γ1, γ2):

g3P (γ, γ1, γ2) =
1

4ν14ν2π
Γ 2
(
1

2
− iν

)

Γ 2 (iν) .

(A.14)

Substituting this result for g3P (γ, γ1, γ2) of (A.14) into
the expression of (A.3), the triple pomeron vertex is given
explicitly in the momentum representation, in the limit
that |ν1|= |ν2|= 0, by the expression

G3P (q= 0,k, ν, ν1→ 0, ν2→ 0) =

2−2iν

4ν14ν2π
(k2)iν−

1
2
Γ 3(12 − iν)Γ

2(iν)

Γ
(
1
2 + iν

) . (A.15)

To calculate the first enhanced amplitude of Fig. 7,
there is an integration to be evaluated of the two triple
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pomeron vertices at both ends of the loop, over the un-
known momentum k (see (39)), which takes the form

∫
d2kG3P (q= 0,k, ν, ν1, ν2)G3P (q= 0,k,−ν

′, ν1, ν2) .

(A.16)

Inserting the result of (A.15) gives

∫
d2kG3P (q= 0,k, ν, ν1, ν2)G3P (−ν

′, ν1, ν2)

=
22(iν

′−iν)

π2

∫
d2k(k2)(iν−iν

′)−1

×
Γ 3
(
1
2 − iν

)
Γ 3
(
1
2 + iν

′
)
Γ 2(iν)Γ 2(−iν′)

Γ
(
1
2 + iν

)
Γ
(
1
2 − iν

′
)

1

16ν2116ν
2
2

.

(A.17)

Now to integrate over k, it is useful to make the change
of variable l = ln k. Then the right hand side of (A.17) re-
duces to a delta function in ν and ν′, to give the result

∫
d2kG3P (q= 0,k, ν, ν1, ν2)G3P (−ν

′, ν1, ν2) =

22(iν
′−iν)

8

δ(ν−ν′)

4ν214ν
2
2

×
Γ 3
(
1
2 − iν

)
Γ 3
(
1
2 + iν

′
)
Γ 2(iν)Γ 2(−iν′)

Γ
(
1
2 + iν

)
Γ
(
1
2 − iν

′
) .

(A.18)

A.2 Calculation of the first enhanced amplitude

In this subsection, the amplitude for the first enhanced di-
agram is derived by evaluating the integrals on the RHS
of (39), namely

PBFKLenhanced(p1,p2, Y,q) =B

∫ ∞

−∞
dν

∫ ∞

−∞
dν′
∫ ∞

−∞
dν1

×

∫ ∞

−∞
dν2

∫
d2k

∫ Y

YH+
1
2 δYH

dY1

∫ YH− 12 δYH

0

dY2

×E(p1,q, ν)D(ν)e
ω(ν)(Y−Y1)G3P (ν, ν1, ν2,q= 0,k)

×D(ν1)D(ν2)e
(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYH

×G3P (−ν
′, ν1, ν2,q= 0,k)e

ω(ν′)Y2E(p2,q,−ν
′) .
(A.19)

There are three regions of integration to be considered,
namely the region close to |ν| → 0 and the region close to
iν→± 12 . Firstly, the regions close to iν→±

1
2 will be con-

sidered at the same time, because as will be shown, it turns
out that, in fact, the integration over ν is the same around
these two points. Integrating the product of the two triple
pomeron vertices appearing in (A.19) over the unknown
momentum k in the loop results in the expression given
in (A.18), which is proportional to the Dirac delta function

δ(ν−ν′). Inserting this into the RHS of (A.19), and ab-
sorbing the delta function δ(ν−ν′) by integrating over ν′

and setting everywhere ν = ν′ results in the expression

PBFKLenhanced =
B

8

∫ ∞

−∞
dν

∫ ∞

−∞
dν1

∫ ∞

−∞
dν2

∫ Y

YH+
1
2 δYH

dY1

×

∫ YH− 12 δYH

0

dY2E(p1,q, ν)D
2(ν)eω(ν)(Y−Y1+Y2)

×
Γ 3
(
1
2 − iν

)
Γ 3
(
1
2 + iν

)
Γ 2(iν)Γ 2(−iν)

4ν214ν
2
2Γ
(
1
2 + iν

)
Γ
(
1
2 − iν

)

×D(ν1)D(ν2)e
(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYHE(p2,q,−ν) ,

(A.20)

where

B =−
α4sπ

4

8

(
αsNc

2π2

)2
.

Using the identity Γ (x)Γ (1−x) = π/ sinπx, the inte-
grand of (A.20) simplifies to

PBFKLenhanced =
Bπ2

8

∫ ∞

−∞
dν

∫ ∞

−∞
dν1

∫ ∞

−∞
dν2

∫ Y

YH+
1
2 δYH

dY1

×

∫ YH− 12 δYH

0

dY2E(p1,q, ν)D
2(ν)eω(ν)(Y−Y1+Y2)

×
Γ 2
(
1
2 − iν

)
Γ 2
(
1
2 + iν

)

4ν214ν
2
2ν
2 sin2(iνπ)

D(ν1)D(ν2)

× e(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYHE(p2,q,−ν) . (A.21)

It is assumed that the conjugate momenta p1 and p2
of the two scattering dipoles in Fig. 7 are equal. Using the
expression of (18) for the two pomeron vertices, (A.21) re-
duces to

PBFKLenhanced =
2Bπ6

p2

∫ ∞

−∞
dν

∫ ∞

−∞
dν1

∫ ∞

−∞
dν2

∫ Y

YH+
1
2 δYH

dY1

×

∫ YH− 12 δYH

0

dY2D
2(ν)eω(ν)(Y−Y1+Y2)

×
Γ 2
(
1
2 − iν

)
Γ 2
(
1
2 + iν

)

4ν214ν
2
2ν
4 sin2(iνπ)

×D(ν1)D(ν2)e
(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYH . (A.22)

Hence the expression on the RHS of (A.19) reduces to
the product of integrals over ν, ν1 and ν2, as well as the in-
tegrations over the rapidity variables Y1 and Y2, which can
be written in the simplified form

PBFKLenhanced =
2Bπ6

p2

∫ Y

YH+
1
2 δYH

dY1

∫ YH−12 δYH

0

dY2IνIν1Iν2 ,

(A.23)
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where

Iν =

∫ ∞

−∞
dνeω(ν)(Y−Y1+Y2)

×
Γ 2
(
1
2 − iν

)
Γ 2
(
1
2 + iν

)
D2(ν)

sin2(iνπ)ν4
, (A.24)

Iν1 =

∫ ∞

−∞
dν1
eω(ν1)(Y1−Y2)D(ν1)

4
, (A.25)

Iν2 =

∫ ∞

−∞
dν2
eω(ν2)(Y1−Y2)D(ν2)

4
. (A.26)

Consider first the integration over γ in (A.21). Recall
that the definition of the BFKL eigenvalue, namely ω(ν) =
ᾱs
{
ψ(1)−ψ

(
1
2 + iν

)
−
(
1
2 − iν

)}
, which has two poles at

the points where ν→± 12 . In these cases, the BFKL eigen-
value behaves as

ω(ν)
ν→± 12
−−−−→−

2ᾱs
1
2 ± iν

. (A.27)

The rest of the ν dependent part of the integrand,

namely
Γ2( 12−iν)Γ

2( 12+iν)D
2(ν)

sin2(iνπ)ν4
behaves like

Γ 2
(
1
2 − iν

)
Γ 2
(
1
2 + iν

)
D2(ν)

sin2(iνπ)ν4

ν→± 12
−−−−→

(
1

2
± iν

)−6
,

(A.28)

where the fact that the Euler gamma function Γ (x)
x→0
−−−−→

x−1 has been used in (A.28). Therefore, plugging (A.28)
into (A.24), the ν part of the integration in (A.21) at these
two poles takes the form

Iν
ν→± 12
−−−−→

∫ ∞

−∞
dν
exp
(
− 2ᾱs
1
2±iν
(Y −Y1+Y2)

)

(
1
2 ± iν

)6

=
1

(2ᾱs)4
d4

dY 4

∫ ∞

−∞
dν

exp

(

− 2ᾱs
( 12±iν)

(Y −Y1+Y2)

)

(
1
2 ± iν

)2 .

(A.29)

At this stage, it is instructive to change the variables
in (A.29) to −iu = − 2ᾱs

1
2±iν
. The integration measure be-

comes

∫ ∞

−∞
dν→ 2ᾱs

∫ ∞

−∞

du

u2
. (A.30)

Then (A.29) becomes in the terms of the new integra-
tion variables

Iν
ν→± 12
−−−−→

−ı

(2ᾱs)5
d4

dY 4

∫ +∞

−∞
due(Y−Y1+Y2)u

(A.31)

=
2π

(2ᾱs)5
d4

dY 4
δ(Y −Y1+Y2) .

(A.32)

Inserting (A.32) into (A.21) gives the expression for the
amplitude of the first enhanced diagram as iν→± 12 :

[PBFKLenhanced]iν→± 12
=
2Bπ6

p2
π

(2ᾱs)5
d4

dY 4

∫ Y

YH+
1
2 δYH

dY1

×

∫ YH− 12 δYH

0

dY2δ(Y −Y1+Y2)Iν1Iν2 .

(A.33)

The integrations over ν1 and ν2 given in (A.25) and
(A.26) also contain three significant regions of integra-
tion, namely, the regions close to iνi →±

1
2 and |νi| → 0

(i = 1, 2). The following argument will show that the re-
gions close to the points as iνi→±

1
2 give a vanishing con-

tribution to the amplitude of the first enhanced diagram.
This is because inserting Iiνi→± 12

into (A.21), the integra-

tion over the rapidity variables vanishes, as will be shown
below. Following this, Iν1 and Iν2 will be evaluated in this
section for the most important region, namely close to the
point when |νi| → 0 (i= 1, 2). Using the relation of (A.27),
in the region close to iνi→±

1
2 , Iν1 and Iν2 given in (A.25)

and (A.26) behave like

Iiν1→± 12
=

∫ ∞

−∞
dν1
1

4

exp
(
− 2ᾱs
1
2±iν1

(Y1−Y2)
)

1
2 ± iν2

,

Iiν2→± 12
=

∫ ∞

−∞
dν2
1

4

exp
(
− 2ᾱs
1
2±iν2

(Y1−Y2− δYH)
)

(
1
2 ± iν2

)2 .

(A.34)

Using the same change of variables invoked in (A.30),
(A.34) becomes

Iiν1→± 12
=
1

2ᾱs

∫ ∞

−∞
du
1

4
exp((Y1−Y2)u)

=
π

2ᾱs
δ(Y1−Y2) , (A.35)

Iiν2→± 12
=
1

2ᾱs

∫ ∞

−∞
du
1

4
exp((Y1−Y2− δYH)u)

=
π

2ᾱs
δ(Y1−Y2− δYH) . (A.36)

However, due to the Dirac delta function on the RHS, it
is obvious that inserting Iν1→± 12

into (A.33) we obtain the
expression

[PBFKLenhanced]iν1→± 12
=

Bπ6

p2

∫ Y

YH+δYH

dY1

∫ YH−δYH

0

dY2Iν
π

ᾱs
δ(Y1−Y2)Iν2 .

(A.37)

The integration over the rapidity variables Y1 and Y2
vanishes in (A.37). The reason for this is that from the lim-
its of the integration over the rapidity variables in (A.37),
one deduces the inequality condition Y1−Y2 ≥ δYH. Hence,
the argument of the delta function is never zero within the
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specified region of integration. Therefore, the integration
over the rapidity variables Y1 and Y2 on the RHS of (A.37)
vanishes, and one can conclude that the region close to the
points when νi→±

1
2 does not contribute to the integra-

tion at all.
Now that it has been argued that Iν1 and Iν2 do not

contribute in the regions close to the points iνi→±
1
2 , the

main contribution of the Iνi when |νi| → 0 will now be de-
rived. As |νi| → 0, the BFKL eigenvalue in the exponential
of (A.25) and (A.26) has a saddle point. Hence, one can ex-
pand ω(νi) in powers of νi around the saddle point νi = 0
as

ω(νi) = ω(0)+
1

2
ν2i ω

′′(0) , (A.38)

where in (A.38) only powers as high as ν2i in the expansion
are considered, since the BFKL eigenvalue ω(νi) decreases
in value as the value of νi increases. Hence, one is justified
in neglecting powers higher than ν2i for small values of νi.
Using the expansion of (A.38), I|ν1|→0 and I|ν2|→0 take the
form

I|ν1|→0 = 4

∫ ∞

−∞
dν1e

ω(0)(Y1−Y2)+
1
2ν
2
1ω
′′(0)(Y1−Y2) , (A.39)

I|ν2|→0 = 4

∫ ∞

−∞
dν2e

ω(0)(Y1−Y2−δYH)+
1
2ν
2
2ω
′′(0)(Y1−Y2−δYH).

(A.40)

Noting that the exponential in (A.39) and (A.40) has
a saddle point at ν1 = 0 and ν2 = 0, one can integrate over
ν1 and ν2 using the method of steepest descent to give the
results

I|ν1|→0 = 4

(
−2π

ω′′(0)(Y1−Y2)

)1/2
eω(0)(Y1−Y2) , (A.41)

I|ν2|→0 = 4

(
−2π

ω′′(0)(Y1−Y2− δYH)

)1/2
eω(0)(Y1−Y2−δYH) .

(A.42)

Finally inserting the results of (A.41) and (A.42)
into (A.33) gives the result

[PBFKLenhanced]ν→± 12
=
32Bπ7

p2
1

(2ᾱs)5
d4

dY 4

×

{∫ Y

YH+
1
2 δYH

dY1

∫ YH− 12 δYH

0

dY2δ(Y −Y1+Y2)

×
2πe2ω(0)(Y1−Y2−

1
2 δYH)

ω′′(0)(Y1−Y2)1/2(Y1−Y2− δYH)1/2

}

. (A.43)

Now that the result for the first enhanced diagram for
the region close to iν→± 12 has been derived, the last re-
gion to consider is the contribution from the region close to
|ν| → 0. Returning to (A.20), the expression for the ampli-

tude of the first enhanced diagram is

PBFKLenhanced(p1,p2, Y,q) =B

∫ ∞

−∞
dν

∫ ∞

−∞
dν′
∫ ∞

−∞
dν1

×

∫ ∞

−∞
dν2

∫ Y

YH+
1
2 δYH

dY1

∫ YH− 12 δYH

0

dY2

×E(p1,q, ν)D(ν)e
ω(ν)(Y−Y1)D(ν1)D(ν2)

× e(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYHeω(ν
′)Y2E(p2,q,−ν

′)

×
22(iν

′−iν)

8

δ(ν−ν′)

4ν214ν
2
2

×
Γ 3
(
1
2 − iν

)
Γ 3
(
1
2 + iν

′
)
Γ 2(iν)Γ 2(−iν′)

Γ
(
1
2 + iν

)
Γ
(
1
2 − iν

′
) . (A.44)

Now taking the limit that |ν| → 0, this expression sim-
plifies to

PBFKLenhanced(p1,p2, Y,q)
|ν|→0
−−−−→

Bπ2

8

∫ ∞

−∞
dν

∫ ∞

−∞
dν1

×

∫ ∞

−∞
dν2

∫ Y

YH+
1
2 δYH

dY1

∫ YH−12 δYH

0

dY2

×E(p1,q, ν)D
2(ν)eω(ν)(Y−Y1+Y2)

D(ν1)D(ν2)

4ν214ν
2
2ν
4

× e(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYHE(p2,q,−ν) .

(A.45)

It is assumed that the conjugate momenta p1 and p2
of the two scattering dipoles in Fig. 7 are equal. Using the
expression of (18) for the two pomeron vertices, (A.45) re-
duces to

[PBFKLenhanced(p1 = p2 = p, Y,q)]|ν|→0 =
2Bπ6

p2

∫ ∞

−∞
dν

×

∫ ∞

−∞
dν1

∫ ∞

−∞
dν2

∫ Y

YH+
1
2 δYH

dY1

∫ YH− 12 δYH

0

dY2

×D2(ν)eω(ν)(Y−Y1+Y2)
D (ν1)D(ν2)

4ν214ν
2
2ν
4

× e(ω(ν1)+ω(ν2))(Y1−Y2)−ω(ν2)δYH =
2Bπ6

p2

∫ ∞

−∞
dν

×

∫ ∞

−∞
dν1

∫ ∞

−∞
dν2

∫ Y

YH+
1
2 δYH

dY1

×

∫ YH− 12 δYH

0

dY2I
′
|ν|→0Iν1Iν2 , (A.46)

where

I ′ν =

∫ i∞+ε

−i∞+ε
dγ
eω(ν)(Y−Y1+Y2)D2(ν)

ν4
(A.47)

and Iν1 and Iν2 are given in (A.25) and (A.26). In the
case when |ν| → 0, the BFKL eigenvalue ω(ν) has a saddle
point, such that one can use the expression given in (A.38)
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for the BFKL eigenvalue ω(ν) in (A.47). Hence, the inte-
gral I ′ν in the limit that |ν| → 0 takes the form

I ′ν→0 = 256e
ω(0)(Y−Y1+Y2)

∫ ∞

−∞
dνe

1
2 ν
2ω′′(0)(Y−Y1+Y2)

= 256eω(0)(Y−Y1+Y2)
(

2π

ω′′(0)(Y −Y1+Y2)

)1/2
.

(A.48)

It was argued above that the only non-vanishing con-
tributions to Iν1 and Iν2 were for the cases where |ν1| → 0
and |ν2| → 0, and the results for these regions are given
in (A.41) and (A.42). Hence, inserting (A.48), together
with (A.41) and (A.42) into (A.46) gives the result
[
PBFKLenhanced(p1 = p2 = p, Y,q)

]
|ν|=→0

=
(
2π

ω′′(0)

)3/2
512Bπ6

p2
eω(0)Y

∫ Y

YH+
1
2 δYH

dY1

×

∫ YH− 12 δYH

0

dY2 exp(ω(0)(Y1−Y2− δYH))

×16 {(Y1−Y2)(Y1−Y2− δYH)(Y −Y1+Y2)}
−1/2

.

(A.49)

Comparing this with (A.43), which was for the case of
iν→± 12 , one notices a relative suppression of ᾱ

5
s , as well as

an extra term of the order of 1
Y
after integration over the

rapidity variables. Therefore, it turns out that the contri-
bution coming from the region of integration close to the
point |ν| → 0, namely [PBFKLenhanced(p1 = p2 = p, Y,q)]|ν|=→0
given in (A.49), is small compared to [PBFKLenhanced(p1 = p2 =
p, Y,q)]iν=→± 12

given in (A.43). Therefore, neglecting this

contribution when |ν| → 0, the result for the amplitude
of the first enhanced diagram is given by the expression
of (A.43). Using the delta function δ(Y −Y1+Y2) in the in-
tegrand of (A.43), one can easily integrate over the rapidity
variables. If one works in the chosen frame where the Higgs
boson is produced at the rapidity value YH = 0, the final
expression for the amplitude of the first enhanced diagram
takes the form

PBFKLenhanced =
32Bπ8

p2
1

(2ᾱs)5
d4

dY 4

{
e2ω(0)(Y−

1
2 δYH)δYH

ω′′(0)Y 1/2(Y − δYH)1/2

}

=
32Bπ8

p2
1

(2ᾱs)5

{
e2ω(0)(Y−

1
2 δYH)δYH

ω′′(0)Y 1/2(Y − δYH)1/2

}

×

{

16ω4(0)−16
ω3(0)

Y
−16

ω3(0)

Y − δYH

−
36ω2(0)

Y 2
−
36ω2(0)

(Y − δYH)2
−
12ω2(0)

Y (Y − δYH)

+ . . . } . (A.50)

Taking the rapidity Y to be 19 for the LHC energy√
s= 14000GeV, and ω(ν = 0) = 4ᾱs ln 2, the first and sec-

ond terms in the brackets of (A.50) are the largest terms,
and hence at leading order

PBFKLenhanced

=
32Bπ8

(2ᾱs)5ω′′(0)p2
δYH

Y 1/2(Y − δYH)1/2
e2ω(0)(Y−

1
2 δYH)

×

{

(2ω(ν = 0))4−2
(2ω(ν = 0))3

Y
−2
(2ω(ν = 0))3

Y − δYH

}

.

(A.51)
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